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Similarity solutions and collapse in the attractive Gross-Pitaevskii equation
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We analyze a generalized Gross-Pitaevskii~GP! equation involving a paraboloidal trap potential inD space
dimensions and generalized to a nonlinearity of order 2n11. Forattractivecoupling constants collapse of the
particle density occurs forDn>2 and typically to ad function centered at the origin of the trap. By introduc-
ing a special variable for the spherically symmetric solutions, we show that all such solutions are self-similar
close to the center of the trap.Exactself-similar solutions occur if, and only if,Dn52, and for this case of
Dn52 we exhibit an exact but rather specialD51 analytical self-similar solution collapsing to ad function
which, however, recovers and collapses periodically, while the ordinary GP equation in two space dimensions
also has a special solution with periodicd function collapses and revivals of the density. The relevance of these
various results to attractive Bose-Einstein condensation in spherically symmetric traps is discussed.

PACS number~s!: 05.30.2d, 05.45.2a, 03.75.Fi
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The experimental discovery of Bose-Einstein conden
tion in trapped vapors of cooled alkali-metal atoms@1–4# has
opened up unique possibilities for the investigation of coll
tive many-body effects in dilute gases. In the experime
the cloud of atoms is isolated from the environment by
magnetic trap. After cooling, the cloud exhibits Bos
Einstein condensation, i.e., the existence of a macrosc
cally populated quantum state. The study of the dynamic
this quantum state is an important fundamental problem
many-body quantum physics. For three space dimensionD
53, the dynamics of the condensate can be described w
the Hartree-Fock approximation by the Gross-Pitaev
equation

i\F t1
\2

2m
DxF2

4p\2as

m
FuFu22V~xW !F50, ~1!

where F(xW ,t) is the wave function of the condensate, t
external potentialV(xW ) models the wall-less confinemen
~the trap!, m is the mass of an individual atom,as is the
scattering length, andDx5( i

3]2/]xi
2 is the Laplace operator

A convenient choice for the confining trap is the paraboloi
potential, assumed here to be spherically symmetric for s
plicity, i.e., V5(mv0

2/2)xW2.
In this paper we are concerned with condensates inD

53 andD52 dimensions. The Bose-Einstein condensate
two space dimensions is only marginally stable in that be
the critical temperature correlations decay, but decay onl
a power law@5,6#. Recent experimental techniques allow r
alization of a two-dimensional trap for, e.g., spin-polariz
hydrogen adsorbed on a helium surface@7,8#. The dynamics
of trapped Bose-Einstein condensates and the search fo
related solitonlike solutions of the Gross-Pitaevskii equati
is thus an interesting and relevant problem also in two

*Author to whom correspondence should be addressed. Emai
dress: Andrei.Rybin@phys.jyu.fi
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mensions. In this paper we concentrate on some aspec
this dynamics and on the existence of self-similar solutio
of the Gross-Pitaevskii equation in particular. Self-similar
is an important and useful concept in nonlinear dynam
particularly so when collapsing systems are being conside
@9,10# as they are below. This phenomenon of collapse
pears in Bose-Einstein condensates with negative scatte
length, as for example in7Li ~see, e.g.,@11#!. In this paper
we show that self-similar behavior appears only in tw
dimensional traps although ‘‘attractive’’ condensates (as
,0) collapse for allD>2.

To begin with we consider a generalizedD-dimensional
Gross-Pitaevskii~GP! equation, which for units such that\
51, m51/2 can be expressed in the form

ic t1Dxc22kcucu2n2
v2

4
r 2c50. ~2!

Here Dx is the D-dimensional Laplace operator andr 2

5( i
Dxi

2 . Notice that ‘‘generalization’’ means here an exp
nent 2n instead of the 2 that appears in the ordinary G
equation. We consider only the attractive case of Eq.~2! k
,0, and the boundary conditions are vanishing at infin
An observation is that a symmetry that leaves Eq.~2! invari-
ant is

c~xW ,t !→ei $v/4 sin(vt1w0)[2xW•hW 01hW 0•hW 0 cos(vt1w0)] %

3c„xW1hW 0 cos~vt1w0!,t…, ~3!

in which hW 0 is an arbitrary vector inD dimensions andw0 is
an arbitrary phase. This symmetry reveals the, in gene
oscillatorycharacter of the wave packet dynamics of Eq.~2!
whetherk.0 or k,0. In Ref. @9# and its references ‘‘col-
lapse’’ was demonstrated forv50 andk,0. Solutions be-
come singular in a final time interval if the condition
d-
6224 ©2000 The American Physical Society
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nD>2 ~4!

is fulfilled. We show here how the same condition arises
the present context, wherevÞ0 ~andk,0). Reference@12#
has addressed the same problem~of vÞ0) for n51 andD
52 and 3. Following both@9# and@12# we use the functiona
U@c#5*RDr 2ucu2dDx in which r 5uxW u: U@c#>0. From Eq.
~2! this functional satisfies a second order ordinary differ
tial equation whose solution is

U@c#5
4 sin2~vt !

v2 ENLS1U0 cos2~vt !1J0

sin~2vt !

2v

1
4k~Dn22!

v~n11!
E

0

t

sin@2v~ t2t8!#I 2n12@c#dt8

~5!

with

U05U@c#u t50 , J05
d

dt
U@c#U

t50

,

ENLS5E@c#2
v2

4
U0 , ~6!

I q@c#5E
RD

ucuqdDx,

where

E@c#5E
RD

S u¹cu21
2k

n11
ucu2n121

v2

4
r 2ucu2DdDx

~7!

is an obvious ‘‘energy’’ functional and is the Hamiltonian
Eq. ~2! with the bracket$c(xW ),c* (yW )%5 id(xW2yW ).

The Hamiltonian Eq.~7! is a constant of the motion fixe
by the initial data. Fork,0 and smooth enough initial dat
it is not bounded below, whileENLS as defined in Eqs.~6!
has the same properties. The conditionENLS<0, for ex-
ample, still admits a large amount of physically accessi
initial data. A second constant of the motion is*RDucu2dDx
[N, the total number of bosons~atoms!. Careful scrutiny of
U@c# of Eq. ~5! then shows~see also@9,12#! that, provided
that

k,0, Dn>2, ENLS<0, ~8!

with the exception of the special caseDn52, ENLS5J0
50, there is always at least one pointt5t* P(0,p/2v# such
that the right hand side of Eq.~5! becomes negative fort
.t* . Since by its definition the functionalU@c# is non-
negative, this contradiction leads to the conclusion thac
cannot be continued beyond the pointt5t* and must exhibit
a singularity. We show below that this singularity is typica
ucu2→Nd(xW ). However, for the special caseDn52, ENLS
5J050, the functionalU@c#5U0 cos2(vt) never becomes
negative. We show below that collapse inucu2 occurs with
ucu2→Nd(xW ) as t→t* , but now this can be followed by
revival and periodic collapse of periodp/v. There is some
n

-

e

evidence that a form of collapse could occur in general e
when U@c# apparently remains positive, i.e. at some po
t,t* ~see@14,15# and references therein wherev[0). We
shall assume here that collapse occurs only at a zero
U@c#.

Thus the conditions Eq.~8! are sufficient forU@c# to
reach a zero att5t* <p/2v and, generically at least,ucu2

→Nd(xW ) there. These conditions are sufficient but not ne
essary: for given such evolution forENLS<0, the transfor-
mation Eq.~3! can increaseENLS to .0 while the evolution
remains singular. This is true, for example, for the ex
analytical solution Eq.~25! for Dn52 that we give below.
The formation of these singularities may be very sensitive
the initial conditions and the values of the parameters. E
dently these results mean that forENLS<0 initially collapse
and blow-up will occur for allN>Nc @12# ~see also@13# and
references therein!.

We turn to the problem of similarity solutions whic
within the terms of our analysis arise only forDn52. We
seek spherically symmetric solutions of Eq.~2! in the form
c(r ,t)5A(r ,t)eif(r ,t) in which r 5uxW u. From Eq.~2! we ar-
rive at the set of equations

]A2

]t
1

2

r D21

]

]r S r D21A2
]f

]r D50, ~9!

1

r D21

]

]r S r D21
]A

]r D2F]f

]t
1S ]f

]r D 2

1
v2

4
r 2GA22kA2n11

50. ~10!

It is not evident how similarity solutions could be con
structed from this set of equations in the general case, and
therefore choose to make an ansatz for the amplitude v
ableA(r ,t):

A~r ,t !5S h~r ,t !

r D (D21)/2S ]h~r ,t !

]r D 1/2

A0„h~r ,t !….

~11!

This ansatz solves Eq.~9! provided that the functionh sat-
isfies

]h

]t
12

]h

]r

]f

]r
50. ~12!

Notice that the functionA0(h) is arbitrary and the ansat
Eq.~11! describes anarbitrary spherically symmetric solu-
tion. The gradient]f/]r is related to the velocity of the
particles of the condensate, and, through Eq.~12!, h(r ,t) is
then related to the local time dependent concentration of c
densate particles. In facth(r ,t) completely determines this
concentration as is evident from the number of partic
n(r ,t) in the interval@0,r #, which is

n~r ,t ![VDE
0

r

r D21A2~r ,t !dr5VDE
0

h
hD21A0

2~h!dh,

VD5
2pD/2

G~D/2!
, ~13!
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while n(`,t)5N is independent oft. From the ansatz Eq
~11! we can deduce thath(r ,t) is a monotonically increasing
function of r, i.e., ]h/]r .0, andh→` when r→`. Also,
in the vicinity of the originr 50, h behaves as

h~r ,t !5r /r~ t !1O~r 2!, ~14!

wherer(t) is a function of time. The solution forh(r ,t) is
self-similar if h5r /r(t) exactly. This ‘‘self-similarity’’ is in
the sense that the functionh depends now on a single var
ableh5r /r(t). From Eq.~12! it follows immediately that in
this case thephasef(r ,t) is quadratic inr,

f~r ,t !5f0~ t !1
1

4

r8~ t !

r~ t !
r 2. ~15!

Equation~10! should now be understood as an equation
A0. Consider first the casenD52. Separating the variable
in this equation we find that

1

hD21

]

]h S hD21
]A0

]h D22kA0
2n112~m1lh2!A050,

~16!

f081
m

r2
50, ~17!

r91v2r2
4l

r3
50. ~18!

Herel andm are arbitrary constants.
A solution of Eq.~18! can easily be found in the form

r~ t !5Acos2~vt !1
4l

v2
sin2~vt !. ~19!

Other solutions can be obtained through the transforma
t→t1t0 andr(t)→h(t)r„s(t)…, where

h~ t !5@A11a21a cos~2vt !#1/2,
~20!

s~ t !5
1

v
tan21@~A11a22a!tan~vt !#.

We have thus demonstrated that, fornD52, h(r ,t)
5r /r(t) with r(t) given by Eqs.~19! and ~20! is indeed a
solution, and Eqs.~11! and~15! now provide the correspond
ing self-similar solution of the Gross-Pitaevskii equation E
~2!. For the explicit form of this solution one still needs
solve Eq.~16! for A0(h).

In the casenDÞ2 there are no self-similar solutions~ex-
cept the trivial caser5const). Indeed, for the existence
such solutions we need to require that bothA0

2n and
Dh A0 /A0 are functions quadratic inh. These conditions ob
viously cannot be satisfied. This means that, even though
solution given by Eq.~11! is locally self-similar for anyD in
the vicinity of r 50, the exact self-similarity is only realize
for Dn52.
r

n

.

he

For the self-similar solutions there are two integral ide
tities. Multiplying Eq. ~16! by hD21A0 and byhD]A0 /]h,
respectively, and integrating by parts, we find after a lit
algebra that

E
0

`

dhhD21F S ]A0

]h D 2

1
2k

n11
A0

2n122lh2A0
2G50, ~21!

E
0

`

dhhD21F S ]A0

]h D 2

1k
n12

n11
A0

2n121
1

2
mA0

2G50.

~22!

Using the identity Eq.~21! we easily find that the total en
ergy of the solution,E@c# @Eq. ~7!# is given by

E@c#5
1

4
e~r!E

0

`

hD11A0
2~h!dh,

~23!

e~r!5~r8!21v2r21
4l

r2
.

As an example of an exact solution of Eq.~16! we con-
sider here the attractive generalized GP equation in one
mension:D51, (n52), l50, and k,0. In this case we
find that

A0~h!5
p0

AcoshS 2

3
A6ukup0

2h D
, m5

2

3
ukup0

4 , ~24!

and the solution of Eq.~2! can be expressed in the form

c~x,t !5
p0

Acos~vt !

3
exp$2 i tan~vt !@~v/4!x22~2/3v!ukup0

4#%

AcoshF2

3
A6ukup0

2x/cos~vt !G
.

~25!

For an attractive condensate (k,0) we expect the solution
to become singular at a finite time. But it is indeed obvio
that the solution Eq.~25! becomes singular fort→p/2v
when its amplitude diverges as 1/Ap/2v2t. In this limit
ucu2→(p/2)A3/2ukud(x)5Nd(x), which is the conver-
gence to thed function expected. Notice thatucu2 from Eq.
~25! is now periodic of periodp/v while the solution Eq.
~25! itself has jumps in phase, compounded by branch po
singularities, when crossing the singularities ofucu at t
5(p/2v)(2k11), kPZ @16#.

If now we simply assume that the point of collapse ist
5t* defined below Eq.~8!, it can still be shown that the
collapse occurs to ad function centered on the trap. A con
sideration leading to this conclusion is the following. Th
equalityU@c#50 means thatuc(xW ,t* )u50 for anyxW except
possibly at the origin. SinceN5*dDxucu2 is a constant of
motion identified as the total number of bosons~atoms!, the
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obvious physical solution isucu25Nd(xW ), excluding other
possible generalized functions. The spherically symme
case can be treated rigorously. Consider for this the fu
tional U@c# taken on the ansatz Eq.~11!, i.e.,

U@c#5E
0

`

dhr 2~h,t !hD21A0
2~h!. ~26!

For U@c#50 it immediately follows from Eq.~26! that
r (h,t* )50. For an appropriate arbitrary test functionw(r ),
consider now the limit

lim
t→t

*

VDE
0

`

drr D21uc~r ,t !u2w~r !

5 lim
t→t

*

VDE
0

`

dhhD21uA0~h!u2w„r ~h,t !…5Nw~0!.

~27!

This result means rigorously that for spherically symme
solutions for whichU@c# evolves to a zero att5t* the
system blows up to thed function singularity

lim
t→t

*

uc~r ,t !u25Nd~r !.

This result is particularly evident for the self-similar sol
tions for whichh5r /r. In this case,

U@c#5S cos2~vt !1
4l

v2
sin2~vt !D E

0

`

dhhD11A0
2~h!

and the point of collapse forl<0 (ENLS<0) can be readily
found ast* 5(1/v)tan21(v/2Aulu). Notice again that when
l50 the functionalU never becomes negative and there i
possibility of periodicd function collapses and revivals o
the condensate density in this case of two-dimensional tr

Even though the methods are different, some part of
results reported here is analogous to those obtained in R
@9,14,15# for the nonlinear Schro¨dinger equation~NLS!,
which is the Gross-Pitaevskii equation withv[0. This anal-
ogy is related to the fact that forDn52 the generalized NLS
and GP equations are equivalent. For the change of v
ables@17#

u5
1

v
tan~vt !, zi5

xi

cos~vt !
, ~28!

c~x,t !5@cos~vt !#2D/2 expH 2 i
v

4
tan~vt !r 2J p~z,u!

~29!

maps Eq.~2! to
an

et
ic
c-

c

a

s.
e
fs.

i-

ipu1Dzp2
2k

~11v2u2!2Dn/211
pupu2n50, ~30!

and it is clear that forDn52 theu dependence of the effec
tive ‘‘coupling constant’’ disappears and the NLS system
recovered. This means in particular that the whole variety
results available for the two dimensional NLS equation
n51 is directly applicable to the Gross-Pitaevskii equati
for n51 in two space dimensions. It is interesting that t
Gross-Pitaevskii equation allows a self-similar solution
the type considered in this paper only in this case, whe
can be exactly transformed to the NLS equation.

It is worth mentioning that forDn52 all self-similar so-
lutions of the Gross-Pitaevskii equation are invariant un
the transformation

c~x,t !→h~ t !2D/2 expS ih8~ t !

4h~ t !
r 2DcS x

h~ t !
,s~ t ! D . ~31!

For the solution Eq.~25! this transformation means a me
rescalingp0→p0 /(a1A11a2)1/4.

We emphasize that our similarity analysis of the Gro
Pitaevskii equation is based on the ansatz Eq.~11!. This
approach is applicable to the Gross-Pitaevskii equation iD
space dimensions and with an arbitrary external poten
V(xW ). It can also be shown that the dynamics described
the Gross-Pitaevskii equation for an arbitrary initial con
tion that has an extremum is effectively equivalent to a s
tem describing aD-dimensional classical particle. This dy
namical system generalizes that found in@18# for Gaussian
initial profiles through a variational approach. These resu
will be reported in a forthcoming publication.

We showed in this paper that forDn52 alone the gener-
alized Gross-Pitaevskii equation@Eq. ~2!# allows self-similar
solutions, and that in this case it can be exactly transform
to the NLS equation with no trap potential. An explicit sol
tion was given forD51, n52, k,0 which displayed ad
function divergence at a finite time. We further showed,
Dn>2 and k,0, that all spherically symmetric solutions
with ENLS<0 collapse in a finite time to ad function cen-
tered at the origin of the trap, while we showed genera
that even without such symmetry evolution may be to thed
function singularity. The ordinary Gross-Pitaevskii equati
in two space dimensions and withk,0, ENLS50, was
shown to have periodicd function collapses and subseque
revivalsof the particle density.
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