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Similarity solutions and collapse in the attractive Gross-Pitaevskii equation
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We analyze a generalized Gross-Pitaev&RiP) equation involving a paraboloidal trap potentialDnspace
dimensions and generalized to a nonlinearity of ordet2. Forattractive coupling constants collapse of the
particle density occurs fdbn=2 and typically to & function centered at the origin of the trap. By introduc-
ing a special variable for the spherically symmetric solutions, we show that all such solutions are self-similar
close to the center of the trapxactself-similar solutions occur if, and only iDn=2, and for this case of
Dn=2 we exhibit an exact but rather specia 1 analytical self-similar solution collapsing to&function
which, however, recovers and collapses periodically, while the ordinary GP equation in two space dimensions
also has a special solution with periodi¢unction collapses and revivals of the density. The relevance of these
various results to attractive Bose-Einstein condensation in spherically symmetric traps is discussed.

PACS numbes): 05.30—d, 05.45-a, 03.75.Fi

The experimental discovery of Bose-Einstein condensamensions. In this paper we concentrate on some aspects of
tion in trapped vapors of cooled alkali-metal atoiis4] has  this dynamics and on the existence of self-similar solutions
opened up unique possibilities for the investigation of collec-of the Gross-Pitaevskii equation in particular. Self-similarity
tive many-body effects in dilute gases. In the experimentss an important and useful concept in nonlinear dynamics,
the cloud of atoms is isolated from the environment by aparticularly so when collapsing systems are being considered
magnetic trap. After cooling, the cloud exhibits Bose-[9,10] as they are below. This phenomenon of collapse ap-
Einstein condensation, i.e., the existence of a macroscoppears in Bose-Einstein condensates with negative scattering
cally populated quantum state. The study of the dynamics dength, as for example ifLi (see, e.g.[11]). In this paper
this quantum state is an important fundamental problem iwe show that self-similar behavior appears only in two-
many-body quantum physics. For three space dimendlons dimensional traps although “attractive” condensates; (
=3, the dynamics of the condensate can be described withir0) collapse for alD=2.
the Hartree-Fock approximation by the Gross-Pitaevskii To begin with we consider a generalizEddimensional
equation Gross-Pitaevski{GP) equation, which for units such thét

=1, m=1/2 can be expressed in the form
_ h? 47ha,
|ﬁ¢t+ﬁAx¢—

- ®|P|2-V(x)P=0, (1) ,

[+ A= 26092 - r2=0. @
Where®(§,t) is the wave function of the condensate, the

external potential\/(i) models the wall-less confinement ) ) ]

(the trap, m is the mass of an individual atora is the ~ Hereé Ay is the D-dimensional Laplace operator and
scattering length, and, = S342/9x? is the Laplace operator. ==>i Xi - Notice that “generalization” means here an expo-
A convenient choice for the confining trap is the paraboloidan€nt 21 instead of the 2 that appears in the ordinary GP
potential, assumed here to be spherically symmetric for simeguation. We consider only the attractive case of @yj.«
plicity, i.e.,V=(mw§/2)§2. <0, and the boundary conditions are vanishing at infinity.

In this paper we are concerned with condensate® in An observation is that a symmetry that leaves @&gjinvari-

=3 andD =2 dimensions. The Bose-Einstein condensate inam IS

two space dimensions is only marginally stable in that below

the critical temperature correlations decay, but decay only as w(;'t)ﬂei{wm sin(t+ o) [2X- 79+ 70+ 70 COS@t+ @)1}

a power law[5,6]. Recent experimental techniques allow re-

alization of a two-dimensional trap for, e.g., spin-polarized X ,/,()Z+ ;70 coq wt+ ¢g),1), 3

hydrogen adsorbed on a helium surf§@eg]. The dynamics

of trapped Bose-Einstein condensates and the search for the R

related solitonlike solutions of the Gross-Pitaevskii equationsn which 74 is an arbitrary vector i dimensions aneg is

is thus an interesting and relevant problem also in two di-an arbitrary phase. This symmetry reveals the, in general,
oscillatory character of the wave packet dynamics of Ej.
whetherk>0 or k<0. In Ref.[9] and its references “col-

* Author to whom correspondence should be addressed. Email adapse” was demonstrated fas=0 and«x<0. Solutions be-
dress: Andrei.Rybin@phys.jyu.fi come singular in a final time interval if the condition
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nD=2 (4) evidence that a form of collapse could occur in general even
when U[ ¢] apparently remains positive, i.e. at some point

is fulfilled. We show here how the same condition arises int<t, (see[14,15 and references therein whese=0). We
the present context, whete+0 (andx<<0). Referenc¢12]  shall assume here that collapse occurs only at a zero of
has addressed the same probl@hw+0) for n=1 andD Ul ¢].
=2 and 3. Following bot9] and[12] we use the functional Thus the conditions Eq(8) are sufficient forU[ ] to
U[ 1= [ror?|¥|?dPx in which r=|>2|: U[¢]=0. From Eq. reach a zero at=t, <m/20 and, generically at leashiy|?
(2) this functional satisfies a second order ordinary differen-— \/5(x) there. These conditions are sufficient but not nec-

tial equation whose solution is essary: for given such evolution fdty, <0, the transfor-
] ] mation Eq.(3) can increas&y sto >0 while the evolution
ULy]= 45'”2£“’t) ENLS+U0cos’-(wt)+Josm(2wt) remains singular. This is true, for example, for the exact
) 20 analytical solution Eq(25) for Dn=2 that we give below.
The formation of these singularities may be very sensitive to
4x(Dn-2) tsir’{2w(t—t’)]| [y]dt’ the initial conditions and the values of the parameters. Evi-
o(n+1) Jo antz dently these results mean that 8y, <0 initially collapse

5) and blow-up will occur for alW= A\ [12] (see als$13] and
references therein
with We turn to the problem of similarity solutions which
within the terms of our analysis arise only fBm=2. We
seek spherically symmetric solutions of E®) in the form
: P(r,t)=A(r,t)e' Y in which r =|x|. From Eq.(2) we ar-
rive at the set of equations

d
Uo=U[#]]i-0, JOZ&U[III]

t=0

2

w
Ens=EL¢]— - Uo, (6) A2 2 g d
4 2 T ep-1p277 )
ot (D-19r A ar 0. ©)
= agP
L[ 41 LDW" d™x, 1 9, A [9p (dd\2 w? .
| 1P | = e | I A 26AT
r ar ar ot ar 4
where
=0. (10)

2k w?
E :f (V 24 ZF ggent2y Zp2 2| oy
[¥] RD IV n+1|¢| 4 l It is not evident how similarity solutions could be con-
(7 structed from this set of equations in the general case, and we

. . . . . . I therefore choose to make an ansatz for the amplitude vari-
is an obvious “energy” functional and is the Hamiltonian of

) Z T able A(r,t):
Eq. (2) with the brackef ¢(x),¢* (y)}=id(x—y).
The Hamiltonian Eq(7) is a constant of the motion fixed p(r, )\ C=D20 gp(r 1)\ 12
by the initial data. Foik<0 and smooth enough initial data A(r,t)=( ) ( o ) Ao(n(r,1)).
it is not bounded below, whil&y, s as defined in Eqs(6) (11)

has the same properties. The conditiBg, s<<0, for ex-

ample, still admits a large amount of physically accessibleThis ansatz solves E@9) provided that the functior; sat-
initial data. A second constant of the motionfigo|#|?dPx isfies

= N, the total number of bosoriatoms. Careful scrutiny of

U[¢] of Eq. (5) then showssee alsd9,12)) that, provided 9n_ 0m ﬁzo (12)
that ot ar or '
k<0, Dn=2, Epy.s=0, (8) Notice that the functiomy(#) is arbitrary and the ansatz

Eq.11) describes ararbitrary spherically symmetric solu-
with the exception of the special cagn=2, Ey s=Jo  tion. The gradientd¢/dr is related to the velocity of the
=0, there is always at least one poirtt, e (0,m/2w] such  particles of the condensate, and, through @@), 7(r,t) is
that the right hand side of Eq5) becomes negative fdr  then related to the local time dependent concentration of con-
>1t, . Since by its definition the functiondl[¢] is non-  densate particles. In facj(r,t) completely determines this
negative, this contradiction leads to the conclusion #hat concentration as is evident from the number of particles
cannot be continued beyond the pdirtt, and must exhibit n(r,t) in the interval[0,r ], which is
a singularity. We show below that this singularity is typically

=, . r
l_dffjé\/&(x)' However, for tEe special ca@n=2, Ey, g n(r,t)EQDJ erlAZ(r,t)dr:QDfnanlAg( 7d7,
=Jo=0, the functionalU[ ¢]= U, cog(wt) never becomes 0 0
negative. We show below that collapse|if|? occurs with

||?>—N5(X) ast—t, , but now this can be followed by 2mP"

revival and periodic collapse of period/ w. There is some QD:F(Dlz) ' (13
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while n(e,t)=A is independent of. From the ansatz Eq. For the self-similar solutions there are two integral iden-
(11) we can deduce thaj(r,t) is a monotonically increasing tities. Multiplying Eq. (16) by »° 1A, and by nPdA,/d7,
function ofr, i.e., dn/dr>0, andp—~ whenr—«. Also, respectively, and integrating by parts, we find after a little

in the vicinity of the originr=0, » behaves as algebra that
2

n(r,t)=r/p(t)+0(r?), (14 JOC o-1| [ Ao 2K onia \ 2x2 _
wherep(t) is a function of time. The solution fog(r,t) is
self-similar if n=r/p(t) exactly. This “self-similarity” is in o o [ Ao 2 n+2 onsa 1
the sense that the functiom depends now on a single vari- fo dnn % + Km/'\o + E:U'AO =0.
able p=r/p(t). From Eq.(12) it follows immediately that in 22)
this case thehased(r,t) is quadratic inr,

Using the identity Eq(21) we easily find that the total en-

1p'(t) , ergy of the solutionE[ 4] [Eq. (7)] is given by

¢(r,t)=¢o(t)+zmr : (15)

1 ©
_ D+1p2
Equation(10) should now be understood as an equation for EL¥1= 4e(p)f0 7 Aolmda,
Ay. Consider first the caseD=2. Separating the variables (23)

in this equation we find that AN
e(p)=(p' )+ w’p’+ —.
p

1 9 (no—ﬁAO

— — | = 2kAZ" - (LN 5pH)A=0,
77D,l (97] (977) 0 (,LL n 0

As an example of an exact solution of E46) we con-
(16)  sider here the attractive generalized GP equation in one di-
mension:D=1, (n=2), A\=0, and k<0. In this case we
w find that
$o+ =0, (17
P Po

Ao(m)=

4 2 —
p"+w2p——3=O. (18 \/COS"(g 6|K|pg77)
p

2
: M=§|K|D3. (24)

Here) and u are arbitrary constants and the solution of Eq(2) can be expressed in the form

A solution of Eq.(18) can easily be found in the form

Po
Xt)= ———
v vcog wt)

4\
p(t)= \/COSZ(th— —Zsmz(wt). (19
@ exp{—i tan(wt)[ (w/4)x?— (2/3w)| x| p3]}
Other solutions can be obtained through the transformation 2 '
t—t+ty andp(t)—h(t)p(s(t)), where COS}‘{E\/6|K|DSX/COE((UU:|
h(t)=[ 1+ a’+ a cog2wt)]*?, (25)
(20)

1 For an attractive condensate<0) we expect the solution
S(t)zgtz’slrfl[(\/lﬂL a’—a)tan(wt)]. to become singular at a finite time. But it is indeed obvious
that the solution Eq(25) becomes singular fot— 7/2w

We have thus demonstrated that, faD=2, 7(r.t) wh<2'—_\n its amplitude diverges as\H/2w—t. In this limit
=1/p(t) with p(t) given by Eqs(19) and (20) is indeed a  |¥1"—(m/2)V3/2x[5(x)=N5(x), which is the conver-
solution, and Eqs(11) and(15) now provide the correspond- 9€nce to thes function expected. Notice théy|* from Eq.
ing self-similar solution of the Gross-Pitaevskii equation Eq.(29) i now periodic of periodr/w while the solution Eq.
(2). For the explicit form of this solution one still needs to (29 itself has jumps in phase, compounded by branch point
solve Eq.(16) for Ag(7). singularities, when crossing the singularities |of| at t

In the casenD+# 2 there are no self-similar solutioriex- :(77/2“’)(2k+_1)* keZ [16]. ) )
cept the trivial case=const). Indeed, for the existence of ~ |f Now we simply assume that the point of collapset is
such solutions we need to require that bo#3" and =t, defined below Eq(8)_, it can still be shown that the
A, Ag/A are functions quadratic ip. These conditions ob- cpllaps_e Oceurs to & funphon centgrec{ on the trap. A con-
viously cannot be satisfied. This means that, even though thaderation leading to this conclusion is the following. The
solution given by Eq(11) is locally self-similar for anyD in ~ €qualityU[¢]=0 means thafy(x,t, )| =0 for anyx except
the vicinity of r=0, the exact self-similarity is only realized possibly at the origin. Sinca&/= [dPx||? is a constant of
for Dn=2. motion identified as the total number of bosdatoms, the
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obvious physical solution i$y]|?=N5(x), excluding other _ K on
possible generalized functions. The spherically symmetric ipptAp— s> o PIPIF"=0, (30
: - . (1+ w“69)
case can be treated rigorously. Consider for this the func-
tional U[ ] taken on the ansatz E¢l)), i.e., and it is clear that fobn=2 the # dependence of the effec-
tive “coupling constant” disappears and the NLS system is
N D—1A2 recovered. This means in particular that the whole variety of
Ul¥1= fo dnr=Con,t) = A (26) results available for the two dimensional NLS equation for
n=1 is directly applicable to the Gross-Pitaevskii equation
For U[#]=0 it immediately follows from Eq.(26) that for n=1 in two space dimensions. It is interesting that the
r(»,t,)=0. For an appropriate arbitrary test functigfr), Gross-Pitaevskii equation allows a self-similar solution of
consider now the limit the type considered in this paper only in this case, when it
can be exactly transformed to the NLS equation.
It is worth mentioning that fobDn=2 all self-similar so-
lutions of the Gross-Pitaevskii equation are invariant under
the transformation

:t'ﬂ“ajo A Ag( )P (r (7.0)=Ne(0). BxD—h(t) 0" ex"( Th((tt)) ”

lim Qp | drrP Y y(r,t)?e(r)
0

t—ty

X
h(t)
(27) For the solution Eq(25) this transformation means a mere
- - - . rescalingpo— po/(a+ 1+ a?)Y4.
This result means rigorously that for spherically symmetric 0o

solutions for whichU[¢#] evolves to a zero at=t, the We emphasize that our similarity analysis of the Gross-

. - : Pitaevskii equation is based on the ansatz Bd). This
system blows up to thé function singularity approach is applicable to the Gross-Pitaevskii equatidd in

lim |4 (r,t)[2=N&(r). space dimensions and with an arbitrary external potential

t=t, V()?). It can also be shown that the dynamics described by
the Gross-Pitaevskii equation for an arbitrary initial condi-
tion that has an extremum is effectively equivalent to a sys-
tem describing @&-dimensional classical particle. This dy-
an . _ngr_‘nical system generalizes that found[ 18] for Gaussian
U[¢]=| cod(wt)+ —Zsinz(wt))f dnnP+1A%(n) initial profiles through a variational approach. These results
1) 0 will be reported in a forthcoming publication.

) _ We showed in this paper that f@rn=2 alone the gener-
and the point of collapse for<0 (Ey.s<0) can be readily jized Gross-Pitaevskii equati¢Bg. (2)] allows self-similar
found ast, = (1/w)tan *(w/2,[\[). Notice again that when  solutions, and that in this case it can be exactly transformed
A =0 the functional never becomes negative and there is ato the NLS equation with no trap potential. An explicit solu-
possibility of periodics function collapses and revivals of tion was given forD=1, n=2, k<0 which displayed &
the condensate density in this case of two-dimensional trapsunction divergence at a finite time. We further showed, for

Even though the methods are different, some part of th&n=2 and k<0, thatall spherically symmetric solutions
results reported here is analogo"us to those obtained in Refgith E <0 collapse in a finite time to & function cen-
[9,14,19 for the nonlinear Schuiinger equation(NLS),  tered at the origin of the trap, while we showed generally
which is the Gross-Pitaevskii equation with=0. This anal-  that even without such symmetry evolution may be to &he
ogy is related to the fact that f@n=2 the generalized NLS  function singularity. The ordinary Gross-Pitaevskii equation
and GP equations are equivalent. For the change of variin two space dimensions and witk<O, Ey s=0, was
ables[17] shown to have periodié function collapses and subsequent
revivalsof the particle density.

¥ st . (3D

This result is particularly evident for the self-similar solu-
tions for whichz=r/p. In this case,

1 Xj
o= tanwt), z “codwt)’ (28) This work was supported by the Academy of Finland un-
der the Finnish Center of Excellence Programme 2000-2005
e (Project No. 44875, Nuclear and Condensed Matter Physics
¢(x,t)z[cos{wt)]‘°’2exp[—|Ztar(wt)rz} p(z,0) Program at JYFL A.V.R. wishes to thank M. Wadati, J.
(29 Hietarinta, and S. Jaakkola and their collaborators for useful
discussions. G.G.V. was partly supported by Russian Federa-

maps Eq.(2) to tion Research Grant No. RFBR No 98-01-01063.
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